
PostgreSQL
Functions

Βάσεις Δεδομένων

Πολυτεχνείο Κρήτης

PostgreSQL Functions

 PostgreSQL provides four kinds of functions:

 query language functions (functions written in SQL)

 procedural language functions (functions written in, for example, PL/pgSQL or
PL/Tcl)

 internal functions

 C-language functions

 Every kind of function can take base types, composite types, or combinations of these
as arguments (parameters). In addition, every kind of function can return a base type
or a composite type. Functions can also be defined to return sets of base or composite
values.

PostgreSQL Functions
• Advantages of using PostgreSQL stored functions

• Reduce the number of round trips between application and database servers.
All SQL statements are wrapped inside a function stored in the PostgreSQL
database server so the application only has to issue a function call to get the
result back instead of sending multiple SQL statements and wait for the result
between each call.

• Increase application performance because the user-defined functions are pre-
compiled and stored in the PostgreSQL database server.

• Be able to reuse in many applications. Once you develop a function, you can
reuse it in any applications.

• Disadvantages of using PostgreSQL stored functions
• Slow in software development because it requires specialized skills that many

developers do not possess.

• Make it difficult to manage versions and hard to debug.

• May not be portable to other database management systems e.g., MySQL or
Microsoft SQL Server

Functions (Definition)
CREATE [OR REPLACE] FUNCTION func_name(arg1 arg1_datatype [, ..])

RETURNS some_type | SETOF sometype | TABLE (..) AS

$$

BODY of function ..

..

$$

LANGUAGE language_of_function

IMMUTABLE | STABLE | VOLATILE

--LANGUAGE: sql, plpgsql (or others like perl, tcl, python)

• Functions execute an arbitrary list of SQL statements

• The body of an SQL function must be a list of SQL statements
separated by semicolons. A semicolon after the last statement is
optional.

• Any collection of commands in the SQL language can be packaged
together and defined as a function. Besides SELECT queries, the
commands can include data modification queries (INSERT, UPDATE,
and DELETE), as well as other SQL commands.

• The final command must be a SELECT or have a RETURNING clause
that returns whatever is specified as the function's return type.
Alternatively, if you want to define a SQL function that performs actions
but has no useful value to return, you can define it as returning void

Functions (SQL)

• The function interface defines the args and the return type

• You can refer to variables by their name or ordinal position
$1, $2, $3 etc .

• After the body, is noted the Language and a tag that denotes how it should be
cached. In this case we have noted:

• IMMUTABLE meaning that the output of the function can be expected to
be the same if the inputs are the same.

• Other options are STABLE - meaning it will not change within a query given
same inputs and

• VOLATILE such as functions involving random() and
CURRENT_TIMESTAMP that can be expected to change output even in
the same query call.

• PostgreSQL 8.3 introduced the ability to set costs and estimated rows returned
for a function.

Functions (SQL)

Functions (SQL)
No return value
CREATE FUNCTION clean_emp() RETURNS void AS
$$

DELETE FROM emp WHERE salary < 0;
$$
LANGUAGE SQL;

SELECT clean_emp();

Return simple type
CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS integer AS
$$

UPDATE bank SET balance = balance - debit
WHERE accountno = tf1.accountno
RETURNING balance;
- - (or SELECT balance FROM bank WHERE accountno = tf1.accountno;)

$$ LANGUAGE SQL;

Input argument of composite type
CREATE TABLE emp (

name text,
salary numeric,
age integer

);

INSERT INTO emp VALUES ('Bill', 4200, 45);

CREATE FUNCTION double_salary(emp)
RETURNS numeric
AS $$

SELECT $1.salary * 2 AS salary;
$$ LANGUAGE SQL;

SELECT name, double_salary(emp.*) AS dream
FROM emp;

name | dream
---------+-------
Bill | 8400

Functions(SQL)

Function that returns a composite type
CREATE FUNCTION new_emp() RETURNS emp
AS $$

SELECT text 'None' AS name,
1000.0 AS salary,
25 AS age;

$$ LANGUAGE SQL;

Construct a composite argument value
SELECT
name,
double_salary(ROW(name, salary*1.1, age))

AS dream
FROM emp;

Return only one field of composite
SELECT (new_emp()).name;
– OR
CREATE FUNCTION getname(emp) RETURNS text
AS $$

SELECT $1.name;
$$ LANGUAGE SQL;

SELECT getname(new_emp());

SQL Functions on Composite Types

Functions (SQL)
OUT parameters
CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int) AS $$

SELECT x + y, x * y
$$ LANGUAGE SQL;

SELECT sum_n_product(11,42);

Return custom type
CREATE TYPE sum_prod AS (sum int, product int);

CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod
AS 'SELECT $1 + $2, $1 * $2' LANGUAGE SQL;

Functions with Variable Numbers of Arguments
CREATE FUNCTION choose(VARIADIC arr character varying[]) RETURNS character varying AS $$

SELECT $1[3];
$$ LANGUAGE SQL;

SELECT choose('hello','world','hello','chania');

Functions as Table Sources (use in FROM clause)
CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, 'Joe'); INSERT INTO foo VALUES (1, 2, 'Ed'); INSERT INTO foo VALUES (2, 1, 'Mary');

CREATE FUNCTION getfoo(int) RETURNS foo AS $$
SELECT * FROM foo WHERE fooid = $1;

$$ LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1; -- returns only one row

Functions (SQL – PL/pgSQL)
Functions returning sets (USING SQL)
Using table:
CREATE FUNCTION sel_logs_rt(param_user_name varchar)
RETURNS TABLE (log_id int, user_name varchar(50), description text, log_ts timestamptz) AS $$

SELECT log_id, user_name, description, log_ts FROM logs WHERE user_name = $1;
$$ LANGUAGE SQL STABLE;

Using OUT parameters:
CREATE FUNCTION sel_logs_out(puname varchar, OUT log_id int, OUT uname varchar, OUT desc text, OUT log_ts timestamptz)
RETURNS SETOF record AS $$

SELECT * FROM logs WHERE user_name = $1;
$$ LANGUAGE SQL STABLE;

Using composite type:
CREATE FUNCTION sel_logs_so (param_user_name varchar)
RETURNS SETOF logs AS $$

SELECT * FROM logs WHERE user_name = $1;
$$ LANGUAGE SQL STABLE;

Functions returning sets USING PL/pgSQL

CREATE FUNCTION sel_logs_rt(param_user_name varchar)
RETURNS TABLE (log_id int, user_name varchar(50), description text, log_ts timestamptz) AS $$
BEGIN
RETURN QUERY

SELECT log_id, user_name, description, log_ts
FROM logs WHERE user_name = param_user_name;

END;
$$ LANGUAGE plpgsql STABLE;

 PostgreSQL allows user-defined functions to be written in other languages
besides SQL and C.
 These other languages are generically called procedural languages (PLs).
 For a function written in a procedural language, the database server has no
built-in knowledge about how to interpret the function's source text. Instead, the
task is passed to a special handler that knows the details of the language.
 The handler could either do all the work of parsing, syntax analysis, execution,
etc. itself, or it could serve as "glue" between PostgreSQL and an existing
implementation of a programming language. The handler itself is a C language
function compiled into a shared object and loaded on demand, just like any
other C function.

 There are currently four procedural languages available in the standard
PostgreSQL distribution:

 PL/pgSQL
 PL/Tcl
 PL/Perl
 PL/Python

Functions (PL)

PL/pgSQL
• PL/pgSQL is a block-structured language, therefore, a

PL/pgSQL function is organized into blocks.
[<<label>>]

[DECLARE

declarations]

BEGIN

statements;

END [label];

• Each block has two sections: declaration and body. The declaration section is
optional while the body section is required. The block is ended with a semicolon (;)
after the END keyword.

• A block may have an optional label located at the beginning and at the end. You use
the block label in case you want to specify it in the EXIT statement of the block body
or if you want to qualify the names of variables declared in the block.

• The declaration section is where you declare all variables used within the body
section. Each statement in the declaration section is terminated with a semicolon (;).

• The body section is where you place the code. Each statement in the body section is
also terminated with a semicolon (;).

PL/pgSQL

• Anonymoys Blocks
• Example:

DO $$

<<first_block>>

DECLARE

counter integer := 0;

BEGIN

counter := counter + 1;

RAISE NOTICE 'The current value of counter is %', counter;

END first_block $$;

Functions (PL/pgSQL)
Example of Function using PL/pgSQL

CREATE OR REPLACE FUNCTION fnsomefunc (numtimes integer, msg text) RETURNS text AS $$
DECLARE

strresult text;
BEGIN

strresult := '';
IF numtimes = 42 THEN

strresult := 'Right you are!';
ELSIF numtimes > 0 AND numtimes < 100 THEN

FOR i IN 1 .. numtimes LOOP
strresult := strresult || msg || '\r\n';

END LOOP;
ELSE

strresult := 'You can not do that. Please don''t abuse our generosity.';
IF numtimes <= 0 THEN

strresult := strresult || ' You are a bozo.';
ELSIF numtimes > 1000 THEN

strresult := strresult || ' I do not know who you think you are. You are way out of control.';
END IF;

END IF;
RETURN strresult;

END;
$$
LANGUAGE plpgsql IMMUTABLE;

Functions (PL/pgSQL)
Declarations

[<<label>>]
[DECLARE

declarations]
BEGIN

statements
END [label];

Examples
user_id integer;
quantity numeric(5);
url varchar;
myrow tablename%ROWTYPE;
myfield tablename.columnname%TYPE;
arow RECORD;

Example A
CREATE FUNCTION sum_n_product(x int, y int,
OUT sum int, OUT prod int) AS $$
BEGIN

sum := x + y;
prod := x * y;

END;
$$ LANGUAGE plpgsql;

Example B
CREATE FUNCTION
extended_sales(p_itemno int)
RETURNS TABLE(quantity int, total numeric) AS $$
BEGIN

RETURN QUERY
SELECT quantity, quantity * price
FROM sales

WHERE itemno = p_itemno;
END;
$$ LANGUAGE plpgsql;

Functions (PL/pgSQL)
Returning From a Function
- RETURN expression;
- RETURN NEXT expression;
- RETURN QUERY query;
- RETURN QUERY EXECUTE command-string [USING expression [, ...]];

Return expression
CREATE FUNCTION merge_fields(t_row table1) RETURNS text AS $$
DECLARE

t2_row table2%ROWTYPE;
BEGIN

SELECT * INTO t2_row FROM table2 WHERE ... ;
RETURN t_row.f1 || t2_row.f3 || t_row.f5 || t2_row.f7;

END;
$$ LANGUAGE plpgsql;

SELECT merge_fields(t.*) FROM table1 t WHERE ... ;

Return Query
CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS
$BODY$
BEGIN

RETURN QUERY
SELECT flightid
FROM flight
WHERE flightdate >= $1 AND flightdate < ($1 + 1);

END
$BODY$ LANGUAGE plpgsql;
-- Returns available flights
SELECT * FROM get_available_flightid(CURRENT_DATE);

Return using next

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);
INSERT INTO foo VALUES (1, 2, 'three');
INSERT INTO foo VALUES (4, 5, 'six');

CREATE OR REPLACE FUNCTION getAllFoo() RETURNS SETOF foo AS
$BODY$
DECLARE

r foo%rowtype;
BEGIN

FOR r IN SELECT * FROM foo WHERE fooid > 0
LOOP

-- can do some processing here
– ...
RETURN NEXT r; -- return current row of SELECT

END LOOP;
RETURN;

END
$BODY$
LANGUAGE plpgsql;

SELECT * FROM getallfoo();

Functions (PL/pgSQL)

Functions (plpgsql)
Conditionals

IF boolean-expression THEN
statements

END IF;

IF boolean-expression THEN
statements

ELSE
statements

END IF;

IF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements
...]]

[ELSE
statements]

END IF;

IF number = 0 THEN
result := 'zero';

ELSIF number > 0 THEN
result := 'positive';

ELSIF number < 0 THEN
result := 'negative';

ELSE
result := 'NULL';

END IF;

IF vcount = 1 THEN
INSERT INTO users_count (count) VALUES (vcount);
RETURN 'insert done';

ELSE
UPDATE users_count set count = vcount;
RETURN 'update done';

END IF;

Examples

Functions (plpgsql)

Conditionals
CASE search-expression

WHEN expression [, expression [...]] THEN

statements

[WHEN expression [, expression [...]] THEN

statements

...]

[ELSE

statements]

END CASE;

CASE x

WHEN 1, 2 THEN

msg := 'one or two';

ELSE

msg := 'other value than one or two';

END CASE;

CASE

WHEN x BETWEEN 0 AND 10 THEN

msg := 'value is between zero and ten';

WHEN x BETWEEN 11 AND 20 THEN

msg := 'value is between eleven and
twenty';

END CASE;

Searched Case

Simple Case

Functions (PL/pgSQL)
Loops

[<<label>>]
LOOP

statements
END LOOP [label];

EXIT [label] [WHEN boolean-expression];
CONTINUE [label] [WHEN boolean-expression];

[<<label>>]
WHILE boolean-expression LOOP

statements
END LOOP [label];

[<<label>>]
FOR name IN [REVERSE] expression ..
expression [BY expression] LOOP

statements
END LOOP [label];

LOOP
-- some computations
EXIT WHEN count > 100;
CONTINUE WHEN count < 50;
-- some computations for count IN [50 .. 100]

END LOOP;

FOR i IN 1..10 LOOP
-- i will take on the values 1,2,3,4,5,6,7,8,9,10
– within the loop

END LOOP;

FOR i IN REVERSE 10..1 BY 2 LOOP
-- i will take on the values 10,8,6,4,2 within the loop

END LOOP;

WHILE amount_owed > 0 AND balance > 0 LOOP
-- some computations here

END LOOP;

<<loop1>>
LOOP

x := x+1;
<<loop2>>
LOOP

y := y+1;
EXIT loop1 WHEN y > 10;

END LOOP;
EXIT loop1 WHEN x > 100;

END LOOP;

Functions (plpgsql)
Looping through query results
[<<label>>]
FOR target IN query LOOP

statements
END LOOP [label];

Looping through arrays
[<<label>>]
FOREACH target [SLICE number] IN ARRAY
expression LOOP

statements
END LOOP [label];

CREATE FUNCTION sum(int[]) RETURNS int AS $$
DECLARE
s int := 0;
x int;

BEGIN
FOREACH x IN ARRAY $1
LOOP

s := s + x;
END LOOP;
RETURN s;

END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION for_loop_through_query(n INTEGER)

RETURNS VOID AS $$
DECLARE

rec RECORD;
BEGIN

FOR rec IN SELECT title FROM film ORDER BY title LIMIT n

LOOP
RAISE NOTICE '%', rec.title;

END LOOP;

END;

$$ LANGUAGE plpgsql;

Functions (PL/pgSQL)

[<<label>>]
[DECLARE

declarations]
BEGIN

statements
EXCEPTION

WHEN condition [OR condition ...] THEN
handler_statements

[WHEN condition [OR condition ...] THEN
handler_statements

...]
END;

INSERT INTO mytab(firstname, lastname)
VALUES('Tom', 'Jones');

BEGIN
UPDATE mytab SET firstname = 'Joe'
WHERE lastname = 'Jones';
x := x + 1;
y := x / 0;
EXCEPTION
WHEN division_by_zero THEN
-- or WHEN SQLSTATE ‘22012’ THEN

RAISE NOTICE 'caught division_by_zero';
RETURN x;

END;

• postgreSQL error codes at postgresql. Documentation at:
https://www.postgresql.org/docs/13/errcodes-appendix.html

• Handling Errors: By default, any error occurring in a PL/pgSQL function aborts
execution of the function. Errors can be trapped and recover from them by using
a BEGIN block with an EXCEPTION clause.

