
Functional Dependencies and

Normalization for Relational

Databases

Βάσεις Δεδομένων

Πολυτεχνείο Κρήτης

Relational Schema Design

• Semantics of attributes

• Reducing the redundant values in tuples

• Reducing the null values in tuples

• Disallowing spurious tuples

Semantic of attributes

Employee

Project Department

Works

On
manages

Works

for

Controls

Hours

Locations

DNAME

DNUM

ENAME SSN BDATE ADDR

PNAME

PNUM

N

1

1

1

N

M

N 1

Semantic of Attributes (cont)

EName SSN BDATE ADDR DNum

• Guideline: Design a relation schema in such a way that is easy to explain its

meaning. Typically, this means that we should not combine attributes from

multiple entity types and relationship types into a single relation

Pname Pnumber PLOCATION DNUM

SSN PNumber HOURS

DNAME DNumber DMGRSSN

Employee

Department

Project

WorksOn

DNUM DLOCATION

DeptLocations

Relational Database Instance

DNAME DNO …

Research 1 …

Administration 2 …

Headquarters 3 …

ENAME SSN BDATE ADDR DNO

John Smith 1 1/4/70 Rice 321 1

James Borg 2 4/5/72 Space 2 1

Nick Geb 3 23/6/80 Stone 101 2

Ann Wallace 4 14/9/79 Rich 32 3

EMPLOYEE
DEPARTMENT

DNUMBER DLOCATION

1 Houston

2 Stafford

3 Belaire

3 Houston

DEP. LOCATIONS
PNAME PNUMBER PLOCATION DNUM

ProductX 1 Bellaire 3

ProductY 2 Sugarland 1

ProductZ 3 Houston 2

ProductG 4 Stafford 1

PROJECT

SSN PNUMBER HOURS

1 1 32

1 2 10

2 3 22

3 3 15

4 4 5

WORKS_ON

Redundant Information

EMP_DEPT

ENAME SSN BDATE ADDR DNO DNAME …

John Smith 1 1/4/70 Rice 321 1 Research …

James Borg 2 4/5/72 Space 2 1 Research …

Nick Geb 3 23/6/80 Stone 101 2 Administration …

Ann Wallace 4 14/9/79 Rich 32 3 Headquarters …

EMP_PROJ

SSN PNUMBER HOURS ENAME PNAME PLOCATION

1 1 32 John Smith ProductX Belaire

1 2 10 John Smith ProductY Sugarland

2 3 22 James Borg ProduxtZ Houston

3 3 15 Nick Geb ProduxtZ Houston

4 4 5 Ann Wallace ProductG Stafford

•Guideline: Design the relation schemas so that no insertion, deletion, or modification

anomalies occur in the relations. If any anomalies are present, note them clearly so that

the update programs will operate correctly

• Insertion / Deletion / Update Anomalies

Null Values in Tuples

• Nulls can have multiple interpretation
– The attribute does not apply to this tuple

– The attribute value for this tuple is unknown

– The value is known but absent, has not been recorded yet

• Group many attributes in a “fat” relation
– This may lead to many null values in tuples

• Waste of space

• Problems with joins and aggregate operations

• Guideline: As far as possible, avoid placing attributes in a relation whose values may
be null. If nulls are unavoidable, make sure that they apply in exceptional cases only
and do not apply to a majority of tuples in the relation

Spurious Tuples

ENAME PLOCATION

• Guideline: We should design relation schemas so that they are joined with equality

conditions on attributes that are either primary keys or foreign keys in a way that

guarantees that no spurious tuples are generated.

SSN PNUMBER HOURS PNAME PLOCATION

EMP_LOCS

EMP_PROJ1

ENAME LOCATION

Nikos Pappas Chania

Fotis Kazasis Chania

SSN PNUMBER HOURS PNAME PLOCATION

1 1 5 project1 chania

2 1 10 project1 chania

ENAME LOCATION SSN PNUMBER HOURS PNAME

Nikos Pappas Chania 1 1 5 project1

Nikos Pappas Chania 2 1 10 project1

Fotis Kazasis Chania 1 1 5 project1

Fotis Kazasis Chania 2 1 10 project1

Functional Dependencies

• A functional dependency (FD) on a Relational Schema R

is a constaint of the form X->Y, where X,Y are set of

attributes used in R.

• If r is a relation instance of R is said to satisfy this FD, if

for every pair of tuples t & s in r, t & s agree on all

attribute in X then t & s agree on all attributes in Y.

Note:
• If a constaint on R states that there cannot be more than one tuple with a given X-

value in any relation instance r(R) – that is, X is a candidate key of R – this implies

that X->Y for any subset of attributes Y of R.

• If X->Y in R, this does not say whether or not Y->X in R.

Functional Dependencies (cont)

• A functional dependency is a property of the meaning or

semantics of the attributes in a relation schema R.

• Relation instances r that satisfy the FD constraints

specified on the attributes of R are called legal relation

instances

Functional Dependencies (example)

SSN PNUMBER HOURS ENAME PNAME PLOCATION

• Fd1: {SSN,PNUMBER} -> HOURS

• Fd2: SSN->ENAME

• Fd3: PNUMBER->{PNAME,PLOCATION}

EMP_PROJ

fd1

fd2

fd3

Functional Dependencies (example)

TEACHER COURSE TEXT

Smith Data Structures Bartam

Smith Data Management Al-Tour

Hall Compilers Hoffman

Brown Data Structures Augenthaler

•TEACHER -> COURSE ?

•TEXT -> COURSE ?

Inference Rules for Functional Dependencies

• Functional dependency set F

• An FD X->Y is inferred from a set of dependencies on R,
if X->Y holds in every relation instance r that is regal
instance of R

• Inference rules

• Closure of F , F+

Example:
F:

SSN-> {ENAME,BDATE,ADDR,DNUMBER}

DNUMBER->{DNAME,DMGRSSN}

Infer:
SSN->{DNAME,DMGRSSN}

SSN->SSN

DNUMBER->DNAME

Inference Rules

• Reflexive rule Y C X then X->Y

• Augmentation rule X->Y then XZ->YZ

• Transive rule {X->Y,Y->Z} then X->Z

• Decomposition rule {X->YZ} then X->Y

• Union rule {X->Y,X->Z} then X->YZ

• Pseudotransitive rule {X->Y,WY->Z} then WX->Z

• The first 3 IRs are sound and complete

• Armstrong axioms

Discover the dependencies in a

Relation Schema

• First specify the set of functional dependencies F that

can easily be determined from the semantics of the

attributes in the relations

• Determine each set of attributes X that appears as a left

hand side of some FD in F.

Use Amstrong axioms to determine the set of all

attributes that are dependent on X.

• The closure of X under F is the set X+ of attributes that

are functionally determined by X.

Determining the Closure (X+)

• Algorithm:

);(

;

;

;

++

+++

++

+

=

=

−

=

=

XoldXuntil

ZXXthenXYif

doinFZYdependencyfunctionaleachfor

XoldX

repeat

XX

Equivalence of Sets of Functional

Dependencies

• A set of functional dependencies F is said to cover E, if

every FD in E is also in F+; that is every dependency in E

can be inferred from F

• Two sets of functional dependencies E and F are said to

be equivalent if E+ = F+

Minimal Sets of Functional

Dependencies
• A set of functional dependencies F is minimal if it

satisfies the following conditions:

1. Every dependency in F has a single attribute for its right-hand side

2. We cannot replace any dependency X->A in F with a dependency
Y->A, where Y is a proper subset of X, and still have a set of
dependencies that is equivalent to F

3. We cannot remove any dependency from F and still have a set of
dependencies that is equivalent to F

Computation of a minimal Cover

Input: a set of FDs F

Output: G, a minimal cover of F

Step 1: G=F, where all FDs are converted to use singleton-
attributes on the right-hand side

Step 2: Remove all redundant attributes from the left-hand
sides of FDs in G

Step 3: Remove all redundant FDs from G

return G

Normal Forms Based on Primary Keys

• Normalization process

– As first proposed by Codd (1972), takes a relation schema

throughy a series of tests to certify whether or not it belongs to a

certain normal form.

• Normalization of data can be looked on as a process

during which unsatisfactory relation schemas are

decomposed by breaking up their attributes into smaller

relation schemas that possess desirable properties

Normalization for RDB

• Normal forms provide DB designers with:
– A formal framework for analyzing relation schemas based on

their keys and the functional dependencies among their
attributes

– A series of tests that can be normalized to any degree. When a
test fails, the relation violating that test must be decomposed into
relations that will meet the normalization tests.

• The process of normalization through decomposition
must also ensure additional properties:
– The lossless join , which guarantees that the spurious tuple

problem does not occur

– The dependency preservation property, which ensures that all
functionall dependencies are represented in some of the
individual resulting relations

Normalization for RDB

• Definition of Keys
– key

– Candidate key

– Superkey

– Primary key

– Prime attribute

– Nonprime attribute

First Normal Form

• First normal form disallow multi-valued attributes,

composite attributes and their combinations.

• It states that the domains of attributes must include only

atomic (simple, indivisible) values and that the value of

any attribute in a tuple must be single value from the

domain of that attribute

First Normal Form (1NF)

DNAME DNUMBER DMGRSSN DLOCATIONS

Research

Administration

Headquarters

5

4

1

33344

98766

88888

{Bellaire, Sugarland, Houston}

Stafford

Houston

DNAME DNUMBER DMGRSSN DLOCATIONS

Research

Research

Research

Administration

Headquarters

5

5

5

4

1

33344

33344

33344

98766

88888

Bellaire

Sugarland

Houston

Stafford

Houston

Second Normal Form (2NF)

• Full functional dependency

– A functional dependency X->Y is a full functional dependency if

removal of any attribute A from X means that dependency does

not hold any more

• Partial functional dependency

– A functional dependency X->Y is a partial dependency if there is

some attribute A ε Χ that can be removed from X and the

dependency will still hold

• A relation schema R is in 2NF if every nonprime attribute

A in R is fully functionally dependent on the primary key

of R

Second Normal Form (2NF) example

SSN PNUMBER HOURS ENAME PNAME PLOCATION

EMP_PROJ

fd1

fd2

fd3

SSN PNUMBER HOURS PNUMBER PNAME PLOCATIONSSN ENAME

2NF Normalization

Third Normal Form (3NF)

• A functional dependency X->Y in a relation schema R is

a transitive dependency if there is a set of attributes Z

that is not a subset of any key of R, and both X->Z and

Z->Y hold

• A relation schema R is in 3NF if it is in 2NF and no

nonprime attribute of R is transitively dependent on a

primary key

Third Normal Form (3NF) example

EMP_DEPT

ENAME SSN BDATE ADDR DNUM DNAME DMGSSN

3NF Normalization

ENAME SSN BDATE ADDR DNUM DNUM DNAME DMGSSN

General Definition of NFs

• A relation schema R is in second normal form (2NF) if

every nonprime attribute A in R is not partially dependent

on any key of R.

(A relation schema R is in 2NF if every nonprime attribute A in R is

fully functionally dependent on every key of R.

• A relation schema R is in third normal form (3NF)

whenever a functional dependency X->A holds in R, then

either (a) X is a superkey of R or (b) A is prime attribute

of R

Normalization process (example)
PROPERTY_ID COUNTY_NAME LOT# AREA PRICE TAX_RATE

LOTS

PROPERTY_ID COUNTY_NAME LOT# AREA PRICE

LOTS1

COUNTY_NAME TAX_RATE

LOTS2

PROPERTY_ID COUNTY_NAME LOT# AREA AREA PRICE

LOTS1BLOTS1A

LOTS

LOTS2LOTS1

LOTS

LOTS2LOTS1

LOTS1A LOTS1B LOTS2

2NF

3NF

1NF
FD1

FD3

FD2

FD4

FD2

FD1

FD4

FD4

FD2

FD1

FD3

3NF

2NF

Boyce-Codd Normal Form (BCNF)

• A Relational schema R is in Boyce-Codd normal form

if whenever a functional dependency X->A holds in R,

then X is a superkey of R

PROPERTY_ID COUNTY_NAME LOT# AREA

LOTS1A

FD2

FD1

PROPERTY_ID AREA LOT# AREA COUNTY_NAME

BCNF Normalization

LOTS1AX LOTS1AY

FD5

Design of Relational Database Schema

• Universal relation schema R={A1,A2,…,An}

– Using FDs we decompose the universal schema R into a set of

relations D={R1,R2,…,Rm}

– D is the decomposition of R

• Decomposition & attribute preservation

• Decomposition & dependency preservation

• Decomposition & lossless joins

Design of Relational Database Schema (cont)

• Decomposition & attribute preservation
– Each attribute in R must appear in at least one relation Ri

• Decomposition & dependency Preservation
– Given a set of FDs F on R, a projection of F on Ri, πF(Ri), is the set of

dependencies X->Y in F+ such that the attributes in X U Y

are all contained in Ri.

– A decomposition D={R1,R2,…,Rm} of R is dependency preserving with
respect to F if the union of projections of F on each Ri in D is equivalent
to F that is

((πF(R1))U…U(πF(Rm)))+ = F+

• Decomposition & lossless joins
– A decomposition D={R1,R2,…,Rm} of R has the lossless join property

with respect to the set F on R if for every relation instance r of R that
satisfies F, the following holds:

⋈(π<R1>(r),…,π<R2>(r)) = r

- An easy test: R decompose to R1,R2. Decomposition is lossless if

221121 RRRorRRR −− 

Lossless join decomposition into BCNF relations

• Algorithm:

Step 1: set D  {R};

Step 2: while there is a relation schema Q inD that is not in BCNF do

begin

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X->Y in Q that violates BCNF;

replace Q in D by two schemas (Q-Y) and (XUY)

end;

Lossless join & dependency-preserving decomposition

into 3NF relations through schema synthesis

• Algorithm:

Step 1: find a minimal cover G of F;

Step 2: for each left-hand side X that appears in G

create a relation schema {XUA1UA2…UAm} where

X->A1, X->A2,…,X->Am are all the dependencies in G with X as left-

hand side;

Step 3: place all remaining (unplaced) attributes in a single relation schema;

Step 4: if none of the relation schemas contains a key of R, create one more

relation schema that contains attributes that form a key R;

Design Process

• Determination of all functional dependencies among the

database attributes

• Non-deterministic algorithms (minimal cover)

• Top-down database design using ER model

• Combine the two approaches

TUNING ISSUES: To decompose or not to decompose

• Decomposition:

– Makes answering complex queries less efficient

– Makes answering simple queries more efficient

– Makes simple update transactions more efficient

– Can lower storage space demands

	Slide 1: Functional Dependencies and Normalization for Relational Databases
	Slide 2: Relational Schema Design
	Slide 3: Semantic of attributes
	Slide 4: Semantic of Attributes (cont)
	Slide 5: Relational Database Instance
	Slide 6: Redundant Information
	Slide 7: Null Values in Tuples
	Slide 8: Spurious Tuples
	Slide 9: Functional Dependencies
	Slide 10: Functional Dependencies (cont)
	Slide 11: Functional Dependencies (example)
	Slide 12: Functional Dependencies (example)
	Slide 13: Inference Rules for Functional Dependencies
	Slide 14: Inference Rules
	Slide 15: Discover the dependencies in a Relation Schema
	Slide 16: Determining the Closure (X+)
	Slide 17: Equivalence of Sets of Functional Dependencies
	Slide 18: Minimal Sets of Functional Dependencies
	Slide 19: Computation of a minimal Cover
	Slide 20: Normal Forms Based on Primary Keys
	Slide 21: Normalization for RDB
	Slide 22: Normalization for RDB
	Slide 23: First Normal Form
	Slide 24: First Normal Form (1NF)
	Slide 25: Second Normal Form (2NF)
	Slide 26: Second Normal Form (2NF) example
	Slide 27: Third Normal Form (3NF)
	Slide 28: Third Normal Form (3NF) example
	Slide 29: General Definition of NFs
	Slide 30: Normalization process (example)
	Slide 31: Boyce-Codd Normal Form (BCNF)
	Slide 32: Design of Relational Database Schema
	Slide 33: Design of Relational Database Schema (cont)
	Slide 34: Lossless join decomposition into BCNF relations
	Slide 35: Lossless join & dependency-preserving decomposition into 3NF relations through schema synthesis
	Slide 36: Design Process
	Slide 37: TUNING ISSUES: To decompose or not to decompose

